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Abstract— Recent advances in quadrupedal locomotion have
focused on improving stability and performance across diverse
environments. However, existing methods often lack adequate
safety analysis and struggle to adapt to varying payloads and
complex terrains, typically requiring extensive tuning. To over-
come these challenges, we propose a Chance-Constrained Model
Predictive Control (CCMPC) framework that explicitly models
payload and terrain variability as distributions of parametric
and additive disturbances within the single rigid body dynamics
(SRBD) model. Our approach ensures safe and consistent per-
formance under uncertain dynamics by expressing the model’s
friction cone constraints, which define the feasible set of ground
reaction forces, as chance constraints. Moreover, we solve the
resulting stochastic control problem using a computationally
efficient quadratic programming formulation. Extensive Monte
Carlo simulations of quadrupedal locomotion across varying
payloads and complex terrains demonstrate that CCMPC signif-
icantly outperforms two competitive benchmarks: Linear MPC
(LMPC) and MPC with hand-tuned safety margins to maintain
stability, reduce foot slippage, and track the center of mass.
Hardware experiments on the Unitree Go1 robot show successful
locomotion across various indoor and outdoor terrains with
unknown loads exceeding 50% of the robot’s body weight, despite
no additional parameter tuning. A video of the results and
accompanying code can be found at: https://cc-mpc.github.io/.

I. INTRODUCTION

Quadrupedal robots have demonstrated significant poten-
tial in various industrial applications and search and rescue
missions. These robots enhance productivity by transporting
heavy loads and traversing diverse terrains [1]. However,
preventing falls in dynamic environments remains a critical
challenge [2]. Inaccurate system models, external disturbances,
and unpredictable payload variations can cause deviations
from planned motions, resulting in unintended contact loca-
tions or timing errors [3]. As shown in Fig. 1, classical Model
Predictive Control (MPC) methods often struggle with these
discrepancies, leading to instability, foot slippage, or even
falls.

Conventional model-based control methods for quadrupedal
locomotion either fail to account for dynamics uncertainties, as
in Differential Dynamic Programming (DDP) [4], or become
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Fig. 1: Chance-Constrained MPC (bottom) stabilizes the robot
by handling a distribution of inertial uncertainties from 6
kg dumbbells (1) and contact uncertainties, from planks (2).
Linear MPC (top) fails under these conditions.

computationally infeasible when doing so, as with Stochas-
tic Linear Complementarity Problems (SLCPs) [5]. Model-
free Reinforcement Learning (RL) aims to generalize robot
locomotion strategies across diverse environments through
offline training, followed by online deployment. While these
neural network policies work well in practice, they often lack
interpretability and may require frequent re-training to ensure
reliable deployment [6].

In contrast, Stochastic Model Predictive Control (SMPC)
directly incorporates uncertainties into the control design by
modeling them as probability distributions of disturbances [7],
[8]. Unlike deterministic MPC, SMPC permits a small prob-
ability of constraint violation. In our experiments, we set this
probability to 5%, corresponding to a 2σ confidence level.
As a result, 95% of outcomes are expected to remain within
constraints under Gaussian disturbances [9], [10]. This formu-
lation allows the controller to balance conflicting objectives,
such as following a desired trajectory while mitigating unsta-
ble behaviors across a range of real-world terrain disturbances.

In this work, we propose a novel Chance-Constrained MPC
(CCMPC) algorithm—a specific form of SMPC—to generate
ground reaction forces for quadrupedal robots. Our approach
models mass, inertia, and contact sequences as stochastic
variables. By formulating the control problem as a quadratic
programming (QP) problem [11], we achieve real-time solve
rates at ∼500 Hz, comparable to Linear MPC (LMPC). We
validate CCMPC through extensive simulations and hardware
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experiments on the Unitree Go1 robot. Our approach achieves
superior performance over traditional methods in maintaining
stability, reducing foot slippage, and supporting payloads ex-
ceeding 50% of the robot’s weight across muddy slopes, stairs,
grass, and gravel. This is accomplished using a unified control
policy that effectively handles different terrain conditions and
payload variations without the need for parameter tuning. The
key contributions of this paper are summarized as follows:

• We develop a CCMPC algorithm tailored for quadrupedal
robots to handle disturbances from variable payloads and
complex terrain dynamics.

• The control problem is formulated as a quadratic pro-
gram, achieving fast solve times suitable for real-time
application.

• We validate our method through simulations and hard-
ware experiments. In simulations, CCMPC achieves a
100% success rate across multiple gaits, compared to
39.2% for Linear MPC (LMPC) and 75.7% for hand-
tuned MPC. To our knowledge, this is the first SMPC
implementation for quadrupedal robots on hardware.

II. RELATED WORKS

Recent advances in trajectory optimization have improved
the reliability of quadrupedal locomotion, but managing
real-world uncertainties remains challenging. Using convex
MPC with the single rigid body dynamics (SRBD) model
has enabled fast computation of diverse walking gaits for
quadrupedal robots [12]. These approaches require an ac-
curate dynamics model, making them less effective when
the real-world physics deviates from the designed controller
model [13]. Prior work has used DDP to account for uncertain-
ties in trajectory optimization for legged locomotion [14]. Em-
ploying DDP handles inequality constraints implicitly, making
it difficult to address uncertainty impacts on constraint satisfac-
tion [15]. In contrast, our method uses chance constraints [16]
to address this issue explicitly.

Methods for optimizing stochastic contact-implicit trajecto-
ries in legged robots, such as Expected Residual Minimization
(ERM) and SLCP, are computationally demanding and prone
to local minima, making them less suitable for real-time
applications [17], [18]. Conversely, our approach reformulates
the stochastic optimal control problem into a deterministic
convex QP problem, which can be solved at 500 Hz [19].

In contrast to model-based control, model-free RL tech-
niques eliminate the need for an accurate robot model by using
domain randomization during training [20]. This approach
exposes the control policies to a wide range of scenarios,
enhancing their robustness to diverse environments [21]. Nev-
ertheless, these controllers face challenges such as the sim-
to-real gap, potentially leading to conservative strategies or
failure to handle out-of-distribution disturbances [22]. They
are also less intuitive to tune and require more engineering
effort compared to model-based approaches [6]. Our method,
with minimal parameter tuning, demonstrates strong general-
ization capabilities, as evidenced by extensive Monte Carlo
simulations.

Adaptive MPC techniques serve as a middle ground be-
tween model-free RL and classical MPC approaches. Existing
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Fig. 2: The modular control architecture adopted in this work
for quadrupedal locomotion.

methods for quadrupedal locomotion estimate residual model
uncertainties offline using simulation data [23] or online using
L1 adaptive control [24]. In this instance, proper initialization
of estimated parameters is crucial to avoid instability before
online model convergence [25]. Additionally, these methods
assume constant uncertainty throughout the MPC horizon. By
propagating state and control variance along the MPC horizon,
our method captures evolving uncertainty, thereby enhancing
prediction accuracy.

Gazar et al. [26] achieved bipedal walking in simulation
despite random forces applied to the robot’s CoM. This was
accomplished by using tube MPC to handle additive poly-
topic uncertainties in the dynamics. However, their approach
assumed a constant CoM height and zero angular momentum,
limiting movement to planar motion without rotation. Xu et
al. [13] addressed this limitation by employing robust min-
max MPC for quadrupedal walking. Their method considers
bounded disturbances and always plans for the worst-case
scenario, resulting in overly conservative behavior [27]. As a
result, they had to assign one set of MPC weights for frictional
disturbances and another for payload uncertainties. In con-
trast, SMPC offers greater flexibility than RMPC by allowing
small, user-defined probabilities of constraint violation, which
mitigates the issue of conservativeness without sacrificing per-
formance [8]. Despite the advantages of SMPC, existing work
on quadrupedal robots is mostly confined to simulations and is
computationally intensive for real-time deployment [3], [28]–
[30]. In this paper, we overcome this computational challenge
through an efficient QP implementation. This allows us to
deploy the approach on a hardware platform and demonstrate
its real-time processing capabilities without the need for hand-
tuning, as required in RMPC.

III. CHANCE-CONSTRAINED FOOT FORCE MPC

In this section, we introduce the Chance-Constrained Foot
Force MPC framework, which optimizes ground reaction
forces to ensure stability under uncertain conditions. As
illustrated in Fig. 2, the framework uses a footstep plan-
ner that determines when each leg should enter the swing
(white) or stance (blue) phase based on a predefined contact
schedule [31]. For the swing foot, the Raibert heuristic [12]



calculates the required motor torques, planning the trajectory
from initiation through apex to landing using a cubic spline.
CCMPC then optimizes ground reaction forces for the stance
feet. The state estimator fuses IMU and foot force sensor data
using an Extended Kalman Filter (EKF) to estimate the center
of mass states and leg end positions.

The whole-body dynamics can be expressed using manipu-
lator equations [32]:

M(q)q̈+N(q, q̇) = ST τmotors + J(q)T fcontact (1)

Here, q represents the generalized robot pose, M is the mass
matrix, and N encapsulates other nonlinear terms. The selec-
tion matrix S captures the actuation from the motors, mapping
the joint torques to the robot’s dynamics. As discussed in [33],
the foot contact forces fcontact can be mapped to desired motor
torques τmotors via the contact Jacobian J(q). MPC is an effec-
tive strategy to determine these foot forces due to its ability to
solve constrained optimal control problems [32]. Nevertheless,
MPC faces challenges when dealing with substantial modeling
errors, which can arise from various factors including diverse
payloads and terrains. These modeling errors often lead to
instability and deviations from desired trajectories [13].

To address this, we present a stochastic variation of the
SRBD model [12] for quadrupedal robots. The state vector
x = [ΘT ,pT ,ωT , ṗT , g]T includes the robot’s orientation,
position, velocities, and gravity term. The control inputs are
the ground reaction forces at each leg, u = [fT1 , fT2 , fT3 , fT4 ]T .
At time instant i, equations of motion are thus expressed as:

xi+1 = Aixi +Bi(δi)ui +wi, (2)

where δi ∼ N (E[δi],Σδ), wi ∼ N (E[w],Σw)

Here, Ai is the state transition matrix and Bi(δi) is a selection
matrix that maps the control inputs to the state, where δi
represents the distribution of parametric uncertainties. Its mean
is given by δi = [m, diag(I), rTi,1, . . . , r

T
i,4], where m is the

nominal robot mass and diag(I) represents the diagonal entries
of the nominal inertia matrix. At time instant i, ri,1, ri,2, ri,3,
and ri,4 are the foot locations planned using the Raibert
heuristic, as shown in Fig. 2. Σδ is the user-tunable covariance
matrix representing variations in these parameters due to
unknown payloads and uneven terrain. Similarly, E[w] = 0
and Σw are the mean and covariance matrix of the residual
model nonlinearities [23] that are not accounted for by the
nominal SRBD model.

We use CCMPC to capture these sources of uncertainty by
incorporating probabilistic descriptions of uncertainties into a
stochastic optimal control problem [10]. Though by modeling
uncertainties, guaranteeing constraint satisfaction at all times
becomes impractical. Chance constraints instead ensure state
and control constraints are satisfied with a specified proba-
bility, allowing controlled levels of constraint violation [10].
This balance between effective performance and reliability
is essential for maintaining consistent operation in uncertain
environments.

Specifically, we enforce the linearized friction cone con-
straints and the unilateral force constraints [34] as chance
constraints on the ground reaction forces. Mathematically,

these constraints can be expressed as:

Pr(Ciui ≤ 0) ≥ ϵ (3)

Here, Ci ∈ R20×12 encapsulates the friction cone and uni-
lateral force constraints for the four feet of a quadrupedal
robot. Each foot contributes four linearized constraints to
approximate the friction cone and one constraint for the
unilateral contact force, resulting in a total of 20 constraints.
The matrix Ci maps these constraints to the 12-dimensional
control input vector representing ground reaction forces. The
term ϵ represents acceptable probability thresholds for con-
straint satisfaction, allowing a controlled level of constraint
violation. Furthermore, we minimize the expected cost, which
includes deviations from the desired CoM trajectory and a
regularization term on the control inputs to reflect control
effort:

E[J(x,u)] = E

[
N−1∑
i=0

∥xi+1 − xref,i+1∥2Q + ∥ui∥2R

]
(4)

Here, the expectation is taken with respect to the distributions
of the robot state and control actions: x ∼ (x̄,Σx) and
u ∼ (v,Σu), where x̄ and v denote the means, and Σx

and Σu denote the covariances. Over the MPC horizon N ,
the positive semi-definite matrix Q weighs the tracking error
between the state x and the reference state xref, and the
positive definite matrix R weighs the control effort. Finally, we
include a constraint using Di to ensure that forces are zeroed
out for legs not in contact with the ground, as determined by
the footstep planner:

Diui = 0 (5)

The resultant form of the Chance-Constrained Foot Force
MPC, incorporating stochastic dynamics and chance inequality
constraints, is thus expressed as:

minimize
xi,ui

Eqn. 4

subject to Eqn. 2, Eqn. 3, Eqn. 5
(6)

IV. CONVEX QP REFORMULATION OF CCMPC

Solving the original CCMPC problem, as expressed in
Eqn. 6, is computationally infeasible. This is primarily due to
the need for integrating multi-dimensional Gaussian probabil-
ity density functions to evaluate the chance constraints, which
becomes intractable for high-dimensional systems [9]. In this
section, we derive an efficient deterministic reformulation of
the stochastic optimal control problem.

A. Uncertainty Propagation

Due to the parametric uncertainties in the system dynamics
and additive disturbances, future predicted states result in a
stochastic distribution. Similar to [3], we parameterize the
control law as a state-dependent feedback policy. As a result,
future control actions also exhibit uncertainty. Specifically, the
control law is of the form:

ui = vi +Ki(xi − x̄i) (7)

Here, vi is the feedforward control input and x̄i is the
predicted mean of the state distribution. The feedforward



action, vi, provides the primary control effort to achieve the
desired trajectory based on the predicted system behavior.
The feedback action, Ki(xi − x̄i), adjusts for any deviations
from the predicted trajectory due to disturbances or model
inaccuracies. Optimizing both the feedback gains Ki and the
control inputs vi leads to a bi-level optimization problem,
which is non-convex and computationally expensive for real-
time MPC applications [35]. Instead, we precompute the gains
Ki using efficient solvers for the Discrete Algebraic Riccati
Equation (DARE) [36]. Thus, the decision variables of our
optimization problem are vi and x̄i.

Next, we present expressions for the first and second mo-
ments of the trajectory distributions. For detailed derivations,
interested readers are referred to [10]. Applying the expecta-
tion operator to Eqn. 2, we obtain:

E[xi+1] = x̄i+1 = Aix̄i +Bi(δ̄i)ūi (8)

The covariance of the state distribution at the next time step
can be expressed as:

Σxi+1
= E[(xi+1 − x̄i+1)(xi+1 − x̄i+1)

T ]

= AclΣxi
AT

cl +PiΣδP
T
i +Σw

(9)

Here, Acl = Ai+Bi(δ̄i)Ki represents the closed-loop system
dynamics, and Pi is the Jacobian of x̄i+1 with respect to the
mean of the parameters δ̄i:

Pi =
∂x̄i+1

∂δ̄i
=

∂(Aix̄i +Bi(δ̄i)ūi)

∂δ̄i
(10)

Based on these equations, the mean and covariance of the
control distribution can be expressed as:

E[ui] = vi and Σui
= KiΣxi

KT
i (11)

We now show how using these Gaussian-distributed trajec-
tories allows us to analytically derive a deterministic counter-
part of the chance control constraints.

B. Friction Cone Constraint Adjustment

To ensure there is no slippage between the robot’s feet and
the ground, the reaction forces must stay within the linearized
friction pyramid and satisfy the unilaterality constraint [32].
This results in five chance constraints per foot that must
be jointly satisfied [3]. The Boole-Bonferroni inequality [29]
allows us to conservatively approximate the probability of
satisfying these joint chance constraints by summing the
probabilities of each individual constraint for all n = 4 feet.

5n∑
j=1

Pr(Cj
iui > 0) ≤ 1− ϵ, =⇒ Eqn. 3 (12)

where, Cj
i is the jth row of the Ci matrix.

While optimizing risk allocation for each constraint could
be more effective, it involves a two-stage optimization problem
that can be computationally expensive [37]. To circumvent this
problem, we assign uniform risks α to each constraint, where
α = (1− ϵ)/5n. Hence, Eqn. 12 becomes:

Pr(Cj
iui > 0) ≤ α =⇒ Pr(Cj

iui ≤ 0) ≤ 1− α (13)

Fig. 3: Illustration of friction cone constraint adjustment.

Finally, since the control actions follow a normal distri-
bution, ui ∼ N (vi,Σ

u
i ), individual chance constraints in

Eqn. 13 can be deterministically reformulated as [38]:

Cj
ivi + ϕ−1(1− α)

√
Cj

i Σ
u
i (C

j
i )

T ≤ 0 (14)

where ϕ−1 is the inverse of the cumulative distribution func-
tion of a standard normal distribution [3]. Applying Eqn. 14 to
all rows of Ci, we get the following constraints on the mean
of control actions:

Civi ≤ ci, (15)

ci = col(c1i , . . . , c
5n
i ) and cki = −ϕ−1(1− α)

√
Ck

i Σ
u
i (C

k
i )

T

This modification of the original inequality constraints,
based on the computed ci values in Eqn. 15, adjusts the
feasible set of ground reaction forces to capture variations
in operating conditions and robot dynamics [8]. The extent
of this adjustment is determined by the constraint satisfaction
threshold ϵ and the control covariance Σu

i propagated along
the MPC horizon. Fig. 3 illustrates this schematically.

Alternatively, we could have also heuristically chosen a
constant value for ci [3]. In Section V, we demonstrate how
this heuristic-based approach results in increased constraint
violations, leading to greater instability. Despite the additional
computation required to evaluate the ci factors for constraint
modification, the resultant stance-leg control problem can still
be solved efficiently at 500 Hz, making it suitable for real-time
implementation.

C. Reduction to Quadratic Program

In this section, we consolidate the setup of the MPC
optimization problem. Following the approach in [39], we use
a mean-equivalent approximation of the expected cost along
the nominal trajectory:

Eqn. 4 ≈ J(x̄,v) =

N−1∑
i=0

∥x̄i+1 − xref,i+1∥2Q + ∥vi∥2R (16)

Finally, we apply the constraint Eqn. 5 to the mean of the
contact forces, that is

E[Diui] = Divi = 0 (17)



Algorithm 1 Chance-Constrained MPC

Initialize ci ← 0
while goal configuration is not reached, do

for i = 0 to N − 1 do ▷ MPC Loop
Compute δ̄i, Ai, Bi(δ̄i), Di using Eqn. 2
Add cost function and constraints to Eqn. 18

end for
Output: x̄∗,v∗ ← Solve Eqn. 18 ▷ MPC Output
Initialize Σx ← 0 ▷ Constraint Tightening Loop
for i = 0 to N − 1 do

Ki ← DARE(Ai,Bi(δ̄i),Q,R)
Σu ← Propagate Control Variance, Eqn. 11
ci ← Compute Factors, Eqn. 15
Σx ← Propagate State Variance, Eqns. 9, 10

end for
end while

Friction cone constraint tightening is based on the previous
MPC solution, allowing these factors to be pre-computed and
fixed for real-time optimization [9].

In summary, given a nominal contact plan and a desired
CoM trajectory, CCMPC involves solving the deterministic
reformulation of the original stochastic optimization problem
as the following quadratic program:

{x̄∗,v∗} = minimize
x̄i,vi

Eqn. 16

subject to Eqn. 8, Eqn. 15, Eqn. 17
(18)

Using single shooting [40], we further reduce the number
of decision variables in Eqn. 18 to only include the mean
of the control actions. The resultant optimization problem is
solved using the qpOASES solver [19]. The first element of the
optimal ground reaction force sequence v∗ is then converted to
desired foot motor torques using the contact Jacobian, J(q).
Algorithm 1 outlines the steps necessary to implement the
proposed stance-leg controller for quadrupedal locomotion.

V. EXPERIMENTS

In this section, we present simulation and hardware experi-
ments evaluating our CCMPC framework. CCMPC effectively
tracks the desired height with unmodeled 6 kg payloads
and successfully handles loads up to 7.3 kg, exceeding the
manufacturer’s recommended payload limit. Extensive indoor
and outdoor tests across diverse terrains—including grass,
gravel, muddy slopes, stairs, and slippery surfaces—confirm
its stability under various payloads. Additional results are
available in the supplementary video.

A. Implementation Details

We validate our approach on the Unitree Go1 robot, which
has a total mass of 12 kg. The legs contribute around 10%
of the total weight, allowing us to approximate the robot’s
dynamics with a SRBD model, as in Eqn. 2 [12]. The robot’s
pose and velocities are obtained using onboard IMU and
motor encoders. All algorithms are executed on a Legion 5
Pro laptop with an Intel i7-12700H processor and 32 GB
RAM. Communication between the robot and laptop is fa-
cilitated using Lightweight Communications and Marshalling

TABLE I: MPC specific parameters used across all methods.

Parameter Value

Stepping Frequency 2.5 Hz
Foot Height 0.08 m
Planning Horizon 10 steps
Planning Timestep 0.025 s
Position Weight (Z) 500
Velocity Weights (X, Y) 20, 5
Angular Velocity Weights (X, Y, Z) 0.2, 0.2, 1.0
Roll and Pitch Weights 0.2, 0.2
Control Penalty Weights 1e-6

TABLE II: CCMPC variance parameters.

Parameter Value

Mass 15.0
Inertia (X, Y, Z) 0.02, 0.06, 0.06
Angular Velocity (X, Y, Z) 0.5, 0.2, 0.01
Linear Velocity (X, Y, Z) 0.5, 0.2, 0.01
Contact Location (X, Y, Z) 0.36, 0.36, 0.36

(LCM) [41]. The reported runtime of 500 Hz accounts for all
the computational steps in the control pipeline. This includes
the footstep planner, the inverse kinematics-based swing leg
controller, the calculation of constraint adjustment factors, and
solving the resulting QP.

We compare our CCMPC approach against two bench-
marks: Linear MPC (LMPC), which lacks friction cone
constraint tightening, and Heuristic MPC (HMPC), which
uses hand-computed constraint tightening factors. The MPC-
specific parameters used for these three methods are detailed in
Table I. The parametric and additive uncertainties for CCMPC,
corresponding to Σδ and Σw in Eqn. 2, are shown in Table II.

B. Simulation Analysis

The simulation experiments are conducted using the Py-
Bullet simulator [42] with a high-fidelity dynamics model.
We conduct Monte Carlo simulations to demonstrate that
our control policy can stabilize quadrupedal motion across
various payloads and terrains without parameter adjustments.
The robot was commanded to move forward at 0.25 m/s,
performing blind locomotion over wooden planks with varying
payloads, as shown in Fig. 4(a). The payloads were uniformly
sampled within a range of 1 to 10 kg, while the plank heights
were uniformly sampled from 0 to 5 cm. A total of 1000
samples were generated to introduce sufficient variability in
inertial properties and contact locations. Given the robot’s
mass of 12 kg and a foot raise height of 8 cm, these values
represent significant variations from nominal conditions. For
heuristic constraint tightening, we considered a maximum
unmodeled payload of 10 kg and calculated the necessary
gravity compensation in the Z direction from the stance feet.
To accommodate the maximum commanded acceleration of
0.2 m/s2, we ensured the robot could generate sufficient force
in both the X and Y directions, even with the additional
payload. This method allowed us to heuristically determine
the necessary constraint tightening factors for all directions.

We assessed each controller’s performance using four met-
rics, logged in Table III. Success rate was determined based on



(a) Planks (b) Flytrot Gait

(c) Random Elevation Wavefield (d) Blind Stair Climbing

Fig. 4: Comparison of LMPC (left, fails) and CCMPC (right, succeeds) across various gaits and terrains. Similar failures were
also observed with HMPC in these experiments.

TABLE III: Results from 1000 Monte-Carlo Simulations.

Metric Gait LMPC HMPC CCMPC

Success Rate (%) ↑ Trot 38.1 77.7 100
Flytrot 40.3 73.7 100

Average Slippage Ratio ↓ Trot 0.26 0.12 0.11
Flytrot 0.25 0.17 0.15

Normalized Tracking Cost ↓ Trot 1.4±0.1 1.1±0.2 1.0±0.1
Flytrot 2.2±0.4 1.9±0.2 1.0±0.3

Normalized Effort Cost ↓ Trot 1.5±0.2 1.3±0.2 1.0±0.2
Flytrot 1.9±0.3 1.5±0.4 1.0±0.2

three failure criteria: deviations in the base’s height by more
than 30% from its desired value, orientation of the robot with
respect to the ground normal dropping below 0.8 (indicating a
significant tilt), and any infeasibility in solving the QP due to
constraint violations. These thresholds were identified during
hardware tuning as points where the robot physically fell. The
slippage ratio was calculated as (f2

x + f2
y )/f

2
z , where fx, fy ,

and fz represent the ground reaction force components. This
ratio represents the degree to which the friction cone was sat-
urated, with higher values indicating worse performance. For
the normalized costs, CCMPC was used as the baseline and
normalized to 1. The other methods were compared relative to
it in two categories: normalized tracking cost, where a higher
value indicates poorer tracking of the desired CoM trajectory,
and normalized effort cost, where a higher value indicates
increased actuation effort. To ensure a fair comparison, the
normalized cost and slippage ratio metrics were computed only
for successful simulations. Failed simulations were excluded
from these metrics to prevent skewed results due to failure
conditions.

Our quantitative results show that LMPC had the lowest
success rate, highest slippage ratio, and highest normalized
cost. HMPC showed improvements over LMPC due to hand-
tuned constraint tightening. However, as HMPC maintains a
constant level of constraint tightening throughout the MPC
horizon, it was less effective in adapting to disturbances, like
unmodeled payloads and uneven planks. CCMPC obtained
the best performance across both gaits, dynamically adjusting
constraints in real-time to balance safety and tracking, thereby
minimizing slippage and maintaining stability [3].

(a) LMPC

(b) CCMPC

Fig. 5: Simulated height tracking performance with an unmod-
eled 6 kg payload.

Fig. 5 illustrates the height tracking performance, where
unlike CCMPC, LMPC struggles to maintain stability and
results in a fall. The slight offset in CoM height under CCMPC
arises from prioritizing safety constraints, such as preventing
foot slippage, allowing minor deviations in height to ensure
robust performance across various conditions.

Fig. 4 demonstrates simulations on various challenging
terrains, where the robot traversed random elevation wavefield,
randomly placed planks, and performed blind stair climbing.
High-speed tests at 1.75 m/s were also conducted using the
flytrot gait. In all these scenarios, the robot performed blind
locomotion while carrying a fixed 6 kg payload. Both LMPC
and HMPC struggled to maintain stability, while CCMPC
successfully maintained stability and tracking, effectively han-
dling unmodeled terrain and payload uncertainties.



(a) Grass (b) Gravel (c) Muddy Slope (d) Planks (e) Bouncy Playground

(f) Pull Task (g) Push Task (h) Concrete Slope (i) Blind Stair Climbing (j) Slippery Whiteboard

Fig. 6: Hardware validation of CCMPC across different locomotion tasks and terrains. Video demonstrations can be found at
https://cc-mpc.github.io/.

(a) LMPC

(b) CCMPC

Fig. 7: Hardware height tracking performance with an unmod-
eled 6 kg payload.

C. Hardware Validation

To validate our approach in real-world conditions, we con-
ducted hardware experiments using the Unitree Go1 robot,
replicating key scenarios from the simulations. The first ex-
periment, illustrated in Fig. 1, involved loading the robot with
a 6 kg payload and commanding it to walk over randomly
placed wooden planks at a speed of 0.5 m/s. This experiment
was conducted under blind locomotion conditions, where the
controller was unaware of the planks or additional mass. While
LMPC failed to navigate this terrain, CCMPC successfully
guided the robot across the planks.

We explored the versatility of our control algorithm through
various challenging terrain experiments, as shown in Fig. 6.
The robot, loaded with additional unknown mass, successfully
climbed stairs and navigated muddy slopes, grass, and gravel.
The robot also performed tasks on objects, such as pushing
and pulling an unknown 5 kg payload. In another experiment,
the robot walked over a whiteboard coated with cooking oil,
significantly reducing the friction between the robot’s feet and
the surface. For this test, we reduced the robot’s speed to
0.1 m/s and adjusted the coefficient of friction in the MPC
from 0.4 to 0.2 to account for the slippery surface. Despite
these adverse conditions, the robot successfully navigated all
these surfaces, showcasing its ability to handle diverse ground
textures and maintain stability on slippery and uneven surfaces.

To demonstrate the repeatability of our control strategy,
we conducted a series of progressive load tests, as shown
in Fig. 7. In these experiments, the robot was commanded
to move forward at a speed of 0.25 m/s while carrying
increasing payloads: 1.3 kg, 2.2 kg, 3.0 kg, 4.3 kg, 6.0
kg, and 7.3 kg. The robot traversed flat ground during all
tests. The results showed that LMPC maintained stability up
to 4.3 kg but failed to navigate with a 6.0 kg payload. In
contrast, CCMPC successfully handled both 6.0 kg and 7.3
kg payloads, even exceeding the manufacturer’s recommended
maximum payload of 5.0 kg. More hardware demonstrations
can be found in the supplementary video, which provides a
comprehensive overview of the robot’s performance across
these varied conditions.

VI. CONCLUSION

In this paper, we presented a Chance-Constrained Model
Predictive Control (CCMPC) framework to generate optimal
ground reaction forces for quadrupedal locomotion. CCMPC
generates a unified control policy to stabilize quadrupedal
locomotion across a wide range of unmodeled payloads and
varying terrain conditions in real-time with minimal param-
eter tuning. The effectiveness of our approach was validated
through extensive simulation and hardware experiments.

However, some limitations were observed, particularly with
heavier payloads. Tightening control constraints in anticipation

https://cc-mpc.github.io/


of added mass can lead to QP infeasibility. To address this,
future work will explore machine learning methods [43], [44]
to actively learn payload dynamics. Additionally, we aim to
extend this approach to loco-manipulation tasks in bipedal
robots handling unknown payloads [45].
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